Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38260472

ABSTRACT

Many neurodevelopmental defects are linked to perturbations in genes involved in housekeeping functions, such as those encoding ribosome biogenesis factors. However, how reductions in ribosome biogenesis can result in tissue and developmental specific defects remains a mystery. Here we describe new allelic variants in the ribosome biogenesis factor AIRIM primarily associated with neurodevelopmental disorders. Using human cerebral organoids in combination with proteomic analysis, single-cell transcriptome analysis across multiple developmental stages, and single organoid translatome analysis, we identify a previously unappreciated mechanism linking changes in ribosome levels and the timing of cell fate specification during early brain development. We find ribosome levels decrease during neuroepithelial differentiation, making differentiating cells particularly vulnerable to perturbations in ribosome biogenesis during this time. Reduced ribosome availability more profoundly impacts the translation of specific transcripts, disrupting both survival and cell fate commitment of transitioning neuroepithelia. Enhancing mTOR activity by both genetic and pharmacologic approaches ameliorates the growth and developmental defects associated with intellectual disability linked variants, identifying potential treatment options for specific brain ribosomopathies. This work reveals the cellular and molecular origins of protein synthesis defect-related disorders of human brain development. Highlights: AIRIM variants reduce ribosome levels specifically in neural progenitor cells. Inappropriately low ribosome levels cause a transient delay in radial glia fate commitment.Reduced ribosome levels impair translation of a selected subset of mRNAs.Genetic and pharmacologic activation of mTORC1 suppresses AIRIM-linked phenotypes.

2.
Cell Rep ; 38(11): 110517, 2022 03 15.
Article in English | MEDLINE | ID: mdl-35294868

ABSTRACT

Individuals with autism spectrum disorder (ASD) exhibit an increased burden of de novo mutations (DNMs) in a broadening range of genes. While these studies have implicated hundreds of genes in ASD pathogenesis, which DNMs cause functional consequences in vivo remains unclear. We functionally test the effects of ASD missense DNMs using Drosophila through "humanization" rescue and overexpression-based strategies. We examine 79 ASD variants in 74 genes identified in the Simons Simplex Collection and find 38% of them to cause functional alterations. Moreover, we identify GLRA2 as the cause of a spectrum of neurodevelopmental phenotypes beyond ASD in 13 previously undiagnosed subjects. Functional characterization of variants in ASD candidate genes points to conserved neurobiological mechanisms and facilitates gene discovery for rare neurodevelopmental diseases.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Drosophila , Neurodevelopmental Disorders , Receptors, Glycine , Animals , Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/pathology , Autistic Disorder/genetics , Drosophila/genetics , Genetic Predisposition to Disease , Humans , Neurodevelopmental Disorders/genetics , Receptors, Glycine/genetics
3.
Epilepsia ; 63(4): 974-991, 2022 04.
Article in English | MEDLINE | ID: mdl-35179230

ABSTRACT

OBJECTIVE: Epilepsy is common in patients with PIGN diseases due to biallelic variants; however, limited epilepsy phenotyping data have been reported. We describe the epileptology of PIGN encephalopathy. METHODS: We recruited patients with epilepsy due to biallelic PIGN variants and obtained clinical data regarding age at seizure onset/offset and semiology, development, medical history, examination, electroencephalogram, neuroimaging, and treatment. Seizure and epilepsy types were classified. RESULTS: Twenty six patients (13 female) from 26 families were identified, with mean age 7 years (range = 1 month to 21 years; three deceased). Abnormal development at seizure onset was present in 25 of 26. Developmental outcome was most frequently profound (14/26) or severe (11/26). Patients presented with focal motor (12/26), unknown onset motor (5/26), focal impaired awareness (1/26), absence (2/26), myoclonic (2/26), myoclonic-atonic (1/26), and generalized tonic-clonic (2/26) seizures. Twenty of 26 were classified as developmental and epileptic encephalopathy (DEE): 55% (11/20) focal DEE, 30% (6/20) generalized DEE, and 15% (3/20) combined DEE. Six had intellectual disability and epilepsy (ID+E): two generalized and four focal epilepsy. Mean age at seizure onset was 13 months (birth to 10 years), with a lower mean onset in DEE (7 months) compared with ID+E (33 months). Patients with DEE had drug-resistant epilepsy, compared to 4/6 ID+E patients, who were seizure-free. Hyperkinetic movement disorder occurred in 13 of 26 patients. Twenty-seven of 34 variants were novel. Variants were truncating (n = 7), intronic and predicted to affect splicing (n = 7), and missense or inframe indels (n = 20, of which 11 were predicted to affect splicing). Seven variants were recurrent, including p.Leu311Trp in 10 unrelated patients, nine with generalized seizures, accounting for nine of the 11 patients in this cohort with generalized seizures. SIGNIFICANCE: PIGN encephalopathy is a complex autosomal recessive disorder associated with a wide spectrum of epilepsy phenotypes, typically with substantial profound to severe developmental impairment.


Subject(s)
Drug Resistant Epilepsy , Epilepsy , Intellectual Disability , Electroencephalography , Epilepsy/diagnostic imaging , Epilepsy/genetics , Female , Humans , Intellectual Disability/diagnostic imaging , Intellectual Disability/genetics , Phenotype , Seizures/genetics
4.
Brain ; 145(2): 644-654, 2022 04 18.
Article in English | MEDLINE | ID: mdl-34590685

ABSTRACT

Dystonia is a prevalent, heterogeneous movement disorder characterized by involuntarily abnormal postures. Biomarkers of dystonia are notoriously lacking. Here, a biomarker is reported for histone lysine methyltransferase (KMT2B)-deficient dystonia, a leading subtype among the individually rare monogenic dystonias. It was derived by applying a support vector machine to an episignature of 113 DNA CpG sites, which, in blood cells, showed significant epigenome-wide association with KMT2B deficiency and at least 1× log-fold change of methylation. This classifier was accurate both when tested on the general population and on samples with various other deficiencies of the epigenetic machinery, thus allowing for definitive evaluation of variants of uncertain significance and identifying patients who may profit from deep brain stimulation, a highly successful treatment in KMT2B-deficient dystonia. Methylation was increased in KMT2B deficiency at all 113 CpG sites. The coefficients of variation of the normalized methylation levels at these sites also perfectly classified the samples with KMT2B-deficient dystonia. Moreover, the mean of the normalized methylation levels correlated well with the age at onset of dystonia (P = 0.003)-being lower in samples with late or incomplete penetrance-thus serving as a predictor of disease onset and severity. Similarly, it may also function in monitoring the recently envisioned treatment of KMT2B deficiency by inhibition of DNA methylation.


Subject(s)
Dystonia , Dystonic Disorders , Biomarkers , DNA Methylation/genetics , Dystonia/genetics , Dystonia/therapy , Dystonic Disorders/genetics , Dystonic Disorders/therapy , Histone-Lysine N-Methyltransferase/genetics , Humans , Mutation
5.
Prenat Diagn ; 42(7): 845-851, 2022 06.
Article in English | MEDLINE | ID: mdl-34958143

ABSTRACT

OBJECTIVE: About 3% of newborns show malformations, with about 20% of the affected having genetic causes. Clarification of genetic diseases in postnatal diagnostics was significantly improved with high-throughput sequencing, in particular through whole exome sequencing covering all protein-coding regions. Here, we aim to extend the use of this technology to prenatal diagnostics. METHOD: Between 07/2018 and 10/2020, 500 pregnancies with fetal ultrasound abnormalities were analyzed after genetic counseling as part of prenatal diagnostics using WES of the fetus and parents. RESULTS: Molecular genetic findings could explain ultrasound abnormalities in 38% of affected fetuses. In 47% of these, disease-causing de novo variants were found. Pathogenic variants in genes with autosomal recessive or X-linked inheritance were detected in more than one-third (70/189 = 37%). The latter are associated with increased probability of recurrence, making their detection important for further pregnancies. Average time from sample receipt to report was 12 days in the recent cases. CONCLUSION: Trio exome sequencing is a useful addition to prenatal diagnostics due to its high diagnostic yield and short processing time (comparable to chromosome analysis). It covers a wide spectrum of genetic changes. Comprehensive interdisciplinary counseling before and after diagnostics is indispensable.


Subject(s)
Exome , Ultrasonography, Prenatal , Female , Fetus/diagnostic imaging , Humans , Infant, Newborn , Pregnancy , Prenatal Diagnosis , Exome Sequencing
7.
Gene ; 768: 145260, 2021 Feb 05.
Article in English | MEDLINE | ID: mdl-33164824

ABSTRACT

Correct diagnosis of children presenting with developmental delay and intellectual disability remains challenging due to the complex and heterogeneous etiology. High throughput sequencing technologies like exome sequencing have become more commonly available and are significantly improving genetic testing. We present two siblings - a 14-year old male and an 8-year old female patient - with a similar clinical phenotype that was characterized by combined developmental delay primarily affecting speech, mild to moderate intellectual disability, behavioral abnormalities, and autism spectrum disorder, but with no congenital anomalies. The sister showed additional muscular hypotonia and more pronounced dysmorphic features compared to her brother. Both parents had psychiatric disorders and mild to moderate intellectual disability. A common genetic etiology in the siblings was suspected. Metabolic, psychological and neuroradiological examinations were complemented by basic genetic testing including chromosome analysis and array comparative genomics hybridization analysis (CGH), followed by exome sequencing and combined data analysis of the family. Exome sequencing identified two different underlying genetic conditions: in the sister, a maternally inherited pathogenic variant c.1661C > T, p.Pro554Leu in SLC6A8 (NM_005629.4) was identified causing cerebral creatine deficiency syndrome 1 (MIM #300352) which was confirmed by MR spectroscopy and treated accordingly. In the brother, a paternally inherited 16p13.11 duplication was identified by exome sequencing and considered to be likely associated with his and possibly his father's phenotype. The 16p13.11 duplication had been previously identified in an array CGH but had not been prioritized due to the lack of segregation in the siblings. In conclusion, we report a case of intra-familial locus heterogeneity of developmental delay in two siblings. We advocate for the need of unbiased and comprehensive genetic testing to provide accurate diagnosis despite locus heterogeneity.


Subject(s)
Autism Spectrum Disorder/genetics , Developmental Disabilities/genetics , Intellectual Disability/genetics , Nerve Tissue Proteins/genetics , Plasma Membrane Neurotransmitter Transport Proteins/genetics , Brain Diseases, Metabolic, Inborn/genetics , Child , Chromosomes, Human, Pair 16/genetics , Comparative Genomic Hybridization , Creatine/deficiency , Creatine/genetics , Female , Gene Duplication/genetics , Genetic Testing , Humans , Male , Mental Retardation, X-Linked/genetics , Muscle Hypotonia/genetics , Plasma Membrane Neurotransmitter Transport Proteins/deficiency , Siblings , Exome Sequencing
9.
Genet Med ; 22(3): 511-523, 2020 03.
Article in English | MEDLINE | ID: mdl-31680123

ABSTRACT

PURPOSE: Fetal akinesia has multiple clinical subtypes with over 160 gene associations, but the genetic etiology is not yet completely understood. METHODS: In this study, 51 patients from 47 unrelated families were analyzed using next-generation sequencing (NGS) techniques aiming to decipher the genomic landscape of fetal akinesia (FA). RESULTS: We have identified likely pathogenic gene variants in 37 cases and report 41 novel variants. Additionally, we report putative pathogenic variants in eight cases including nine novel variants. Our work identified 14 novel disease-gene associations for fetal akinesia: ADSSL1, ASAH1, ASPM, ATP2B3, EARS2, FBLN1, PRG4, PRICKLE1, ROR2, SETBP1, SCN5A, SCN8A, and ZEB2. Furthermore, a sibling pair harbored a homozygous copy-number variant in TNNT1, an ultrarare congenital myopathy gene that has been linked to arthrogryposis via Gene Ontology analysis. CONCLUSION: Our analysis indicates that genetic defects leading to primary skeletal muscle diseases might have been underdiagnosed, especially pathogenic variants in RYR1. We discuss three novel putative fetal akinesia genes: GCN1, IQSEC3 and RYR3. Of those, IQSEC3, and RYR3 had been proposed as neuromuscular disease-associated genes recently, and our findings endorse them as FA candidate genes. By combining NGS with deep clinical phenotyping, we achieved a 73% success rate of solved cases.


Subject(s)
Fetal Diseases/genetics , Guanine Nucleotide Exchange Factors/genetics , RNA-Binding Proteins/genetics , Ryanodine Receptor Calcium Release Channel/genetics , Trans-Activators/genetics , Adolescent , Adult , Arthrogryposis/genetics , Arthrogryposis/pathology , Child , Child, Preschool , DNA Copy Number Variations/genetics , Female , Fetal Diseases/pathology , Genetic Predisposition to Disease , High-Throughput Nucleotide Sequencing , Humans , Infant , Infant, Newborn , Male , Muscular Diseases/genetics , Muscular Diseases/pathology , Young Adult
11.
Mol Cytogenet ; 7(1): 74, 2014.
Article in English | MEDLINE | ID: mdl-25349628

ABSTRACT

BACKGROUND: Kleefstra syndrome is characterized by intellectual disability, muscular hypotonia in childhood and typical facial features. It results from either a microdeletion of or a deleterious sequence variant in the gene euchromatic histone-lysine N-methyltransferase 1 (EHMT1) on chromosome 9q34. RESULTS: We report on a 3-year-old girl with characteristic symptoms of Kleefstra syndrome. Array comparative genomic hybridization analysis revealed a 145 kilobases duplication spanning exons 2 to 10 of EHMT1. Sequence analysis characterized it as an intragenic tandem duplication leading to a frame shift with a premature stop codon in EHMT1. CONCLUSIONS: This is the first description of an intragenic duplication of EHMT1 resulting in Kleefstra syndrome.

12.
Mol Cytogenet ; 7(1): 7, 2014 Jan 23.
Article in English | MEDLINE | ID: mdl-24456940

ABSTRACT

Reported cases of "pure" duplication of the entire short arm of chromosome 16 (16p) are rare, with only 7 patients described in the literature. We report on a female infant with de novo 16p duplication localized to the short arm of chromosome 6, detected by chromosomal analysis and characterized by array CGH and fluorescence in situ hybridization. This baby girl presented with clinical symptoms characteristic of patients with duplications of the short arm of chromosome 16: psychomotor retardation, constitutional growth delay and specific dysmorphic features, including proximally placed hypoplastic thumbs. In addition, she exhibited evidence of neonatal hemochromatosis as shown by direct hyperbilirubinemia, iron overload and elevated liver enzyme levels. To our knowledge, this is the first report of signs of neonatal hemochromatosis in a patient with 16p duplication.

13.
Am J Med Genet A ; 161A(10): 2634-40, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23949945

ABSTRACT

An increasing number of patients with 3p proximal deletions were reported in the previous decade, but the region responsible for the main features such as intellectual disability (ID) and developmental delay is not yet characterized. Here we report on two monozygotic twin brothers of 2 10/12 years and an 18-year-old man, all three of them displaying severe ID, psychomotoric delay, autistic features, and only mild facial dysmorphisms. Array CGH (aCGH), revealed a 6.55 Mb de novo interstitial deletion of 3p14.1p14.3 in the twin brothers and a 4.76 Mb interstitial deletion of 3p14.1p14.2 in the 18-year-old patient, respectively. We compared the malformation spectrum with previous molecularly well-defined patients in the literature and in the DECIPHER database (Database of Chromosomal Imbalance and Phenotype in Humans using Ensembl Resources; http://decipher.sanger.ac.uk/). In conclusion, the deletion of a region containing 3p14.2 seems to be associated with a relative concise phenotype including ID and developmental delay. Thus, we hypothesize that 3p14.2 is the potential core region in 3p proximal deletions. The knowledge of this potential core region could be helpful in the genetic counselling of patients with 3p proximal deletions, especially concerning their phenotype.


Subject(s)
Chromosome Deletion , Chromosomes, Human, Pair 3 , Twins, Monozygotic/genetics , Abnormalities, Multiple/diagnosis , Abnormalities, Multiple/genetics , Adolescent , Child, Preschool , Chromosome Mapping , Comparative Genomic Hybridization , Facies , Humans , Male , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL
...